skip to main content


Search for: All records

Creators/Authors contains: "Müller, J."

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. We describe how the quadratic Chabauty method may be applied to determine the set of rational points on modular curves of genus$g>1$whose Jacobians have Mordell–Weil rank$g$. This extends our previous work on the split Cartan curve of level 13 and allows us to consider modular curves that may have few known rational points or non-trivial local height contributions at primes of bad reduction. We illustrate our algorithms with a number of examples where we determine the set of rational points on several modular curves of genus 2 and 3: this includes Atkin–Lehner quotients$X_0^+(N)$of prime level$N$, the curve$X_{S_4}(13)$, as well as a few other curves relevant to Mazur's Program B. We also compute the set of rational points on the genus 6 non-split Cartan modular curve$X_{\scriptstyle \mathrm { ns}} ^+ (17)$.

     
    more » « less
    Free, publicly-accessible full text available June 1, 2024
  2. null (Ed.)
  3. Abstract

    Xenon dual-phase time projections chambers (TPCs) have proven to be a successful technology in studying physical phenomena that require low-background conditions. With$$40\,\textrm{t}$$40tof liquid xenon (LXe) in the TPC baseline design, DARWIN will have a high sensitivity for the detection of particle dark matter, neutrinoless double beta decay ($$0\upnu \upbeta \upbeta $$0νββ), and axion-like particles (ALPs). Although cosmic muons are a source of background that cannot be entirely eliminated, they may be greatly diminished by placing the detector deep underground. In this study, we used Monte Carlo simulations to model the cosmogenic background expected for the DARWIN observatory at four underground laboratories: Laboratori Nazionali del Gran Sasso (LNGS), Sanford Underground Research Facility (SURF), Laboratoire Souterrain de Modane (LSM) and SNOLAB. We present here the results of simulations performed to determine the production rate of$${}^{137}$$137Xe, the most crucial isotope in the search for$$0\upnu \upbeta \upbeta $$0νββof$${}^{136}$$136Xe. Additionally, we explore the contribution that other muon-induced spallation products, such as other unstable xenon isotopes and tritium, may have on the cosmogenic background.

     
    more » « less
  4. Abstract

    The coastal ocean contributes to regulating atmospheric greenhouse gas concentrations by taking up carbon dioxide (CO2) and releasing nitrous oxide (N2O) and methane (CH4). In this second phase of the Regional Carbon Cycle Assessment and Processes (RECCAP2), we quantify global coastal ocean fluxes of CO2, N2O and CH4using an ensemble of global gap‐filled observation‐based products and ocean biogeochemical models. The global coastal ocean is a net sink of CO2in both observational products and models, but the magnitude of the median net global coastal uptake is ∼60% larger in models (−0.72 vs. −0.44 PgC year−1, 1998–2018, coastal ocean extending to 300 km offshore or 1,000 m isobath with area of 77 million km2). We attribute most of this model‐product difference to the seasonality in sea surface CO2partial pressure at mid‐ and high‐latitudes, where models simulate stronger winter CO2uptake. The coastal ocean CO2sink has increased in the past decades but the available time‐resolving observation‐based products and models show large discrepancies in the magnitude of this increase. The global coastal ocean is a major source of N2O (+0.70 PgCO2‐e year−1in observational product and +0.54 PgCO2‐e year−1in model median) and CH4(+0.21 PgCO2‐e year−1in observational product), which offsets a substantial proportion of the coastal CO2uptake in the net radiative balance (30%–60% in CO2‐equivalents), highlighting the importance of considering the three greenhouse gases when examining the influence of the coastal ocean on climate.

     
    more » « less
  5. null (Ed.)
  6. Free, publicly-accessible full text available July 1, 2024
  7. Abstract The XENONnT detector uses the latest and largest liquid xenon-based time projection chamber (TPC) operated by the XENON Collaboration, aimed at detecting Weakly Interacting Massive Particles and conducting other rare event searches.The XENONnT data acquisition (DAQ) system constitutes an upgraded and expanded version of the XENON1T DAQ system.For its operation, it relies predominantly on commercially available hardware accompanied by open-source and custom-developed software.The three constituent subsystems of the XENONnT detector, the TPC (main detector), muon veto, and the newly introduced neutron veto, are integrated into a single DAQ, and can be operated both independently and as a unified system.In total, the DAQ digitizes the signals of 698 photomultiplier tubes (PMTs), of which 253 from the top PMT array of the TPC are digitized twice, at ×10 and ×0.5 gain.The DAQ for the most part is a triggerless system, reading out and storing every signal that exceeds the digitization thresholds.Custom-developed software is used to process the acquired data, making it available within ∼30 s for live data quality monitoring and online analyses.The entire system with all the three subsystems was successfully commissioned and has been operating continuously, comfortably withstanding readout rates that exceed ∼500 MB/s during calibration.Livetime during normal operation exceeds 99% and is ∼90% during most high-rate calibrations.The combined DAQ system has collected more than 2 PB of both calibration and science data during the commissioning of XENONnT and the first science run. 
    more » « less
    Free, publicly-accessible full text available July 1, 2024